Invariants of Some Algebraic Curves Related to Drinfeld Modular Curves

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fundamental Domains of Some Drinfeld Modular Curves

We construct fundamental domains for arithmetic subgroups of Γ = GL2(Fq [t]). Given ∆ ⊇ Γ(a) we construct a contracted form T of the Bruhat-Tits tree T and a fundamental domain F of ∆ acting on T. We define a lift of F to F ⊂ T called the “bipartite” lift. We show that F is a fundamental domain of ∆ acting on T precisely when F is “∆-compressed.”

متن کامل

Uniformization of Drinfeld Modular Curves

These are notes from a talk in the Arithmetic Geometry Learning Seminar on Drinfeld modules during the fall of 2017. In this talk, we discuss the uniformization of the Drinfeld modular curves (of fixed rank, with level structure), following [Dri74, §6]. In addition, we introduce the relevant rigid-analytic background. The exposition draws heavily on [DH87, Gek86]. 1. Uniformization of Complex M...

متن کامل

Explicit towers of Drinfeld modular curves

We give explicit equations for the simplest towers of Drinfeld modular curves over any finite field, and observe that they coincide with the asymptotically optimal towers of curves constructed by Garcia and Stichtenoth.

متن کامل

Noncommutative invariants of algebraic curves

We prove that an algebraic curve of genus g admits a representation by the interval exchange transformation. This representation is based on the “zippered rectangles” technique due to W. Veech. The invariants Oλ and θλ of the interval exchange transformation are shown to be the projective invariants of the curve C. We establish a Riemann–Roch formula for Oλ. The first steps to the classificatio...

متن کامل

The Poisson Kernel for Drinfeld Modular Curves

In an earlier work [T I], the author described a technique for constructing rigid analytic modular forms on the p-adic upper half plane by means of an integral transform (a "Poisson Kernel"). In this paper, we apply these methods to the study of rigid analytic modular forms on the upper half plane over a complete local field k of characteristic p. Arising out of the theory of Drinfeld modules [...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Number Theory

سال: 2001

ISSN: 0022-314X

DOI: 10.1006/jnth.2000.2642